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Holonomic or omnidirectional robots are the most common 

platform used in the Robocup Soccer Small Size League, and 

benefit from the system’s high maneuverability. This 

maneuverability comes at the expense of complexity, and as 

such many of the control implementations use abstractions 

that limit performance, leading to a slower trajectory. In this 

paper, the dynamics of the system are analyzed and modelled 

in the Drake control toolbox, and trajectory optimization used 

to investigate the improvements gained with an optimal 

controller. 

Introduction 
Robocup Soccer Small Size League (SSL) is a competition that 

simulates a football game, where two teams of six robots play 

with an orange golf ball, using information from overhead 

cameras. Robot dimensions are constrained to fit within a 

small cylinder, and further restrictions lead to a design that is 

capable of receiving the ball at only one location on the 

perimeter. 

Since the game is dynamic and fast-paced, robots need to be 

able to change direction quickly. This is something that a two-

wheeled differential drive is unable to do, as they are unable 

to exert a force parallel to their wheel axle. Holonomic drives 

allow the resultant drive force to point in any direction, and 

change instantaneously in direction (ignoring constraints from 

the actuators themselves). Additionally, rotational torque can 

be decoupled from linear acceleration, allowing rotation 

simultaneously translation – useful for shielding or receiving a 

ball. 

Holonomic Drives 
The defining feature of a holonomic drive is its wheels, which 

consist of one large motor-driven hub wheel, with a set of 

smaller unpowered sub-wheels whose axes of rotation lie in 

the tangent plane of the hub. These wheels come in two 

common forms – “omniwheels”, where the sub-wheel axis is 

orthogonal to the hub axis; and “Mecanum wheels”, where 

the angle between them is around 45°. The former is the type 

used in Robocup, while the latter has applications in heavier 

robots, due to details of the mechanical design. 

With three or more of these wheels, the kinematics of the 

robot is fully-defined by the kinematics of the wheels. For 

Robocup SSL, typically four wheels are used, due to the 

increased total actuator power, and geometric constraints 

imposed by the kicking mechanism. Some example drive 

configurations are shown in Figure 2. 

  

Figure 1 - From left to right, two views of a Mecanum wheel, and an 

omniwheel, both made by Vex Robotics. The solid arrow is 𝑒 drive, and 

the dashed arrow 𝑒 slip, parameters described in Table 1. We refer to 
the green components as “sub-wheels”. 

Figure 1 - An old photo of the RFC cambridge robocup robots [2] 

(a) 3 omniwheels (b) Mecanum wheels (c) 4 omniwheels 

Figure 2 - Typical holonomic drive configurations, rendered with 
Three.JS [3]. 



Modelling dynamics 
We model the system as a time-invariant second-order state-

space system, parameterized as described in Table 1. The 

model is of the form 

𝑞 = [𝑥 𝑦 𝜃]𝑇 , 𝑞 ̈ = 𝑓(𝑞 ̇, 𝑞 , �⃗� ), 

where 𝑥, 𝑦 is the position of the robot in the global frame, and 

𝜃 is the angle from the world x axis to the robot x axis, 

measured in the right-hand sense. �⃗�  is a vector of non-

dimensional motor voltages, where |𝑢𝑖| ≤ 1. 

We make a number of simplifying modelling assumptions: 

 The inertia of the wheels is neglected 

 The sub-wheel axles are frictionless 

 All wheels remain in non-slip contact with the ground 

We model the motors using a simplified model parameterized 

by the stall-torque and free-running angular velocity: 

𝜏𝑖 = 𝜏𝑖
max (𝑢𝑖 −

𝜔𝑖

𝜔𝑖
max) 

This requires the angular velocity of the wheel to be found. 

Using rigid body dynamics, the velocity of the wheel contact 

point in the body frame can be found as: 

𝑣 𝑖 = 𝑣 |body + �̇� × 𝑑 𝑖  

  𝑣 |body = 𝑅(𝜃)−1𝑣 = [
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] [
�̇�
�̇�
] 

Here we introduce a 2D cross-product shorthand notation, 

𝑎 × 𝑣 ≝ 𝑎𝑒 𝑧 × (𝑣𝑥𝑒 𝑥 + 𝑣𝑦𝑒 𝑦) 

  𝑣 × �⃗⃗� ≝ (𝑣𝑥𝑒 𝑥 + 𝑣𝑦𝑒 𝑦) × (𝑤𝑥𝑒 𝑥 + 𝑤𝑦𝑒 𝑦) ⋅ 𝑒 𝑧 

Splitting the velocity into wheel and sub-wheel components, 

𝑣 𝑖 = 𝑟𝑖𝜔𝑖𝑒 𝑖
drive + 𝑣𝑠𝑒 𝑖

slip
= [

↑ ↑

𝑒 𝑖
drive 𝑒 𝑖

slip

↓ ↓

] [
𝑟𝑖𝜔𝑖

𝑣𝑠
] 

⇒ 𝜔𝑖 = [
1

𝑟
0] [

↑ ↑

𝑒 𝑖
drive 𝑒 𝑖

slip

↓ ↓

]

−1

𝑣 𝑖  

The force exerted on the wheel by the ground must act 

perpendicularly to 𝑒 𝑖
slip

, since the sub-wheels cannot bear 

tangential loads: 

𝑓 𝑖|body = 𝑓𝑖|body(𝑒 𝑖
slip

)
⊥

 

Expressing the total torque exerted by the motor in 3D, where 

𝛼 and 𝛽 are the reaction torques fixing the motor shaft: 

𝜏 𝑖 = 𝜏𝑖(𝑒 𝑖
drive)

⊥
+ 𝛼𝑒 𝑧 + 𝛽𝑒 𝑖

drive 

Resolving moments on the wheel in 3D, we have: 

𝜏 𝑖 = 𝑟 × 𝑓 𝑖|body = −𝑟𝑖𝑒 𝑧 × 𝑓𝑖|body(𝑒 𝑖
slip

)
⊥

 

= 𝑟𝑖𝑓𝑖|body𝑒 𝑖
slip

 

⇒ 𝜏 𝑖 ⋅ (𝑒 𝑖
drive)

⊥
= 𝜏𝑖 = 𝑟𝑖𝑓𝑖|body𝑒 𝑖

slip
⋅ (𝑒 𝑖

drive)
⊥

 

⇒ 𝑓 𝑖|body =
𝜏𝑖

𝑟𝑖

(𝑒 𝑖
slip

)
⊥

𝑒 𝑖
slip

⋅ (𝑒 𝑖
drive)

⊥ 

Note this has a singularity when 𝑒 𝑖
slip

∥ 𝑒 𝑖
drive, but in this case 

the wheels are degenerate anyway – the system would act like 

a ball bearing, exerting no net force 

Finally, we use momentum balances and a frame conversion 

to conclude that: 

[
�̈�
�̈�
] =

1

𝑚
𝑅(𝜃)∑𝑓 𝑖|body , �̈� =

1

𝐼
∑𝑑 𝑖 × 𝑓 𝑖|body 

Symbol Quantity Comments 

𝑚 Overall mass Lumped with wheel mass for simplicity 

𝐼 Overall inertial In the vertical axis. Wheel inertia is not modelled, as it is comparatively small. 

𝑁 Number of wheels State is under-constrained if 𝑁 < 3 

 For each wheel: Vectors measured in the body frame 

𝑟𝑖  Radius From large wheel axle to ground 

𝑑 𝑖  Location Relative to the center of mass 

𝑒 𝑖
drive Drive direction The unit direction vector in which a linear velocity causes only motor shaft rotation – 

should be perpendicular to the motor shaft 

𝑒 𝑖
slip

 Slip direction The unit direction vector in which a linear velocity causes only sub-wheel rotation – 
should be perpendicular to the shaft of the sub-wheel in contact with the ground plane. 
 

For “omniwheels”, 𝑒 𝑖
drive ⊥ 𝑒 𝑖

slip
 

𝜏𝑖
max Motor stall torque  

𝜔𝑖
max Motor free-running 

angular velocity 
 

Table 1 – Parameters of the holonomic drive model 



Combining all these equations gives Equation 1, from it can be 

found that the dynamics are linear in �̇�, �̇�, �̇�, 𝑢𝑖, but non-linear 

in 𝜃. 

Parameter values 
The parameters below describe the robocup robots as used 

by RFC Cambridge. 

Symbol Value 

𝑚 1  kg 
𝐼 0.0031 kg m2 
𝑁 4  

𝜃𝑖  {
𝜋

4
,
3𝜋

4
, −

3𝜋

4
,−

𝜋

4
} rad 

𝑟𝑖  0.025 m 

𝑑 𝑖  0.078 [
cos 𝜃𝑖

sin 𝜃𝑖
] m 

𝑒 𝑖
drive [

− sin 𝜃𝑖

cos 𝜃𝑖
]  

𝑒 𝑖
slip

 [
cos 𝜃𝑖

sin 𝜃𝑖
]  

𝜏𝑖
max 0.75 Nm 

𝜔𝑖
max 150 rad s−1 

Table 2 - parameter estimates for the RFC robot 

These were determined from a mixture of estimation and 

interpretation of constants in existing source code. 

Unfortunately, access to a fully-assembled robot was not 

possible during this project. 

Basic control implementation 
A typical control implementation for this platform implements 

velocity control on this system by resolving the target angular 

velocity into rotor angular velocities, and using an isolated PID 

controller to regulate the velocity of each motor individually. 

From this, an implementation of position control can be 

formed using a 2D equivalent of “bang-bang” or “on-off” 

control, which simply chooses an achievable velocity pointing 

directly towards the goal. Typically, orientation will be 

regulated to remain constant 

This controller has a problem – the maximum robot velocity is 

non-uniform in direction. Consider the robot in Figure 1c 

moving upwards, with uniform motor parameters. To do this, 

the control inputs become �⃗� = [𝑢𝑡𝑙 𝑢𝑏𝑙 𝑢𝑏𝑟 𝑢𝑡𝑟]𝑇 = 

[1 1 −1 −1]𝑇. This gives us a terminal velocity of 

√2𝑟𝜔max. Contrast this with a movement up and to the right 

at 45°, which requires �⃗� = [1 0 −1 0]𝑇. This gives us 

terminal velocity of 𝑟𝜔max. In general, the terminal velocity 

vector is constrained to lie in a convex polygon anchored 

rotationally to the frame of the robot. 

A similar argument can be made about acceleration. For the 

4-wheeled symmetric robot, the bounding polygon for 

accelerations is geometrically similar to the one for velocities, 

but this is not generally true. Later on, we will briefly explore 

exploiting situations when these differ. 

Therefore, we should expect an optimal controller to reorient 

the robot such that the direction of maximum velocity is 

aligned with the direction of motion. 

Trajectory optimization 
To find optimal controllers for a given trajectory, we use direct 

collocated trajectory optimization. This finds a trajectory 

composed of concatenated splines, such that the gradient at 

both the knot-points and the mid-spline matches that 

described by the system dynamics. To implement this, we use 

the DircolTrajectoryOptimization class within the Drake 

[1] toolbox. 

[
�̈�
�̈�
] =

1

𝑚
𝑅(𝜃)∑

𝜏𝑖
max

𝑟𝑖
(

 𝑢𝑖 − [
1

𝑟𝜔𝑖
max 0] [

↑ ↑

𝑒 𝑖
drive 𝑒 𝑖

slip

↓ ↓

]

−1

(𝑅(𝜃)−1 [
�̇�
�̇�
] + �̇� × 𝑑 𝑖)

)

 
(𝑒 𝑖

slip
)
⊥

𝑒 𝑖
slip

⋅ (𝑒 𝑖
drive)

⊥ 

�̈� =
1

𝐼
∑

𝜏𝑖
max

𝑟𝑖
𝑑 𝑖 ×

(

 
 

(

 𝑢𝑖 − [
1

𝑟𝜔𝑖
max 0] [

↑ ↑

𝑒 𝑖
drive 𝑒 𝑖

slip

↓ ↓

]

−1

(𝑅(𝜃)−1 [
�̇�
�̇�
] + �̇� × 𝑑 𝑖)

)

 
(𝑒 𝑖

slip
)
⊥

𝑒 𝑖
slip

⋅ (𝑒 𝑖
drive)

⊥

)

 
 

 

Equation 1 - full system dynamics 

 

Figure 3 – Comparison of the 
basic control strategy and an 
optimal one for the 4-wheel 
omniwheel drive, showing 
robot reorientation. Both 
robots started moving 
simultaneously, and the 
optimal controller can be seen 
to have covered more ground. 



Formally, we solve the problem: 

find 𝑥 (𝑡[⋅]) 𝑠. 𝑡.  𝑥  satisfies dynamics constraints

|�⃗� (𝑡[⋅])|∞ < 1

𝑥 (𝑡[1]) = 𝑥 start
𝑥 (𝑡[𝑁]) = 𝑥 𝑒𝑛𝑑

maximizing   𝑡

 

Since we are evaluating the effectiveness of position control, 

𝑥 start and 𝑥 end were chosen such that the corresponding 𝑞 ̇ =

0. 

To evaluate the improvement offered by the reorientation 

strategy, we should also run an optimization which is 

constrained to not use this strategy. We desire that 

𝑞 𝑖 = 𝑞 start + 𝜆𝑖(𝑞 end − 𝑞 start) ∀𝑖, 

where 𝜆𝑖  is arbitrary constant. In other words, the non-

derivative states are constrained to be a linear interpolation 

between the start and end point. While we could express this 

constraint by making 𝜆𝑖  a decision variable, this would be a 

poor choice, as we end up with further non-convexities. 

Instead, we can express this constraint as a linear one, in 

matrix form, with some manipulation: 

𝐴𝑞 𝑖 = 𝐴𝑞 start + 𝐴𝜆𝑖(𝑞 end − 𝑞 start) 

Choose A ∶ 𝐴(𝑞 end − 𝑞 start) = 0⃗  

⇒ 𝐴𝑞 𝑖 = 𝐴𝑞 start 

We can choose an appropriate 𝐴 in Matlab using 

null((qend  -  qstart)')', where  null(v')' finds a 

matrix whose left null space is 𝑣. 

 

Figure 4 shows the result of running this trajectory for a 

destination 1m away. The optimal controller reaches its target 

in 0.34s, whereas the naïve controller takes 0.38s – roughly a 

10% improvement. Of note is that the optimal controller is 

running all motors at full power until it approaches its target, 

whereas the naïve controller leaves motors at half power. 

Reachable space 
In the previous section, we were optimizing for a fixed 

trajectory in minimal time. Another interesting question is to 

optimize for a given time, and find the region of all reachable 

positions by the robot. This has applications such as 

determining whether a robot is able to intercept a ball. We 

restrict the search space to the three dimensional region 

parameterized by robot position and time. 

To conduct this search, we discretize the space into time step 

and direction vectors. For each horizon time 𝑡𝑒𝑛𝑑  and 

direction vector 𝑑 , we run a trajectory optimization to find the 

furthest reachable location in a given direction 

find 𝑥 (𝑡[⋅]) 𝑠. 𝑡.  |�⃗� (𝑡[⋅])|∞ < 1

𝑥 (𝑡[1]) = 𝑥 start
𝑡[𝑁] = 𝑡 𝑒𝑛𝑑

𝑥 (𝑡[𝑁]) = 𝑥 start + 𝜆𝑑 

𝑥  satisfies dynamics constraints

maximizing  (𝑥 (𝑡[𝑁]) − 𝑥 start) ⋅ 𝑑 

 

Using the same technique as before to re-express the 𝜆 

constraint.  Again, we compare the result of this optimization 

with the result of running the same optimization with the 

additional constraints imposed by the simple controller. The 

results are shown in Figure 5. 

The naïve controller shows the polygonal nature previously 

predicted. For small time periods, the optimal controller has a 

very similar horizon, as there is not enough time to reorient. 

For large time periods, the optimal horizon approaches a 

circle. 

These horizons also show the benefit of choosing a 4-wheel 

base over a three-wheel base, as for the same robot and 

motor parameters, the horizon is greater. Of course, this 

ignores considerations such as incremental motor and battery 

mass. 

There’s an interesting effect here for the three-wheeler 

though: while the optimal controller horizon for the four-

wheeler is coincident with the naïve one at the vertices of the 

polygon, the optimal horizon for the 3-wheeler exceeds it – 

i.e. there is a yet more efficient form of motion than that of 

reorienting to the direction of maximum linear velocity. 

 

Figure 4 - Trajectory optimization applied to a 3-wheel robot. The 
upper plot shows the optimal controller in green.  The lower two plots 
show the input signals for the two controllers 



Trajectory stabilization 
Having found an optimal trajectory, it is useful to be able to 

stabilize it, to deal with disturbances, either in the form of 

model errors, or initial state errors. 

One approach to this is to use TVLQR. We choose our cost 

matrices using Bryson's rule [2]: 

𝑄 = [

⋱ 0
𝛼𝑖

2

(𝑥𝑖)max
2

0 ⋱

] , 𝑅 = 𝜌 [

⋱ 0
𝛽𝑖

2

(𝑢𝑖)max
2

0 ⋱

] 

Where ∑𝛼𝑖 = 1, ∑𝛽𝑖 = 1 

In this case, we choose the maxima 

(𝑢𝑖)max = 1 

𝑥 max = [0.1m 0.1m
𝜋

4
rad 1ms−1 1ms−1 3𝜋rads−1] 

 

And the weights 

𝛽𝑖 = 1, 𝛼 ∝ [10 10 100 1 1 1], 𝜌 =
1

50
 

Finally, we choose 𝑄𝑓 = 100𝑄. 

Figure 6 shows the result of applying the resulting TVLQR 

controller to the optimal trajectory found in Figure 4, with 

perturbations in initial condition normally distributed as  

𝑁 (0, diag (
1

2
𝑥 max)

2

). 

TVLQR is not a perfect approach here, as it does not adjust the 

target based on the current position of the robot. Specifically, 

if the robot “falls behind” the target position, in our problem 

it is impossible for it to catch up, as the target path is the 

fastest of all possible paths. 

Figure 5 – Reachable horizon for 𝑡𝑓 ∈  0.05, 0.10, 0.15, 0.20, 0.25 s for two robot configurations, with optimal and naïve orientation-

preserving controllers. Lines are broken where trajectory optimization was unable to find a solution. 

(a) The horizon for the 4-wheeled model (b) The horizon for the 3-wheeled model 

Figure 6 - Result of applying TVLQR to disturbed initial conditions. All final destinations are within 5% of the goal – so we still achieve better 
time-to-destination that if the naïve controller were used. 



Conclusions 
Using a more detailed model of the drive systems allows the 

dynamics to be exploited. However, the average 

improvement in travel time is small – around 20%. 

Additionally, trajectory optimization runs too slowly for this 

technique to be used online, in a real game. 

Future work could try approximating the optimal controller 

with a closed-form controller, using offline trajectory 

optimization to tune its parameters. 
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