
Time-optimal Trajectories for Holonomic Drive
Robots
Eric Wieser

Holonomic or omnidirectional robots are the most common

platform used in the Robocup Soccer Small Size League, and

benefit from the system’s high maneuverability. This

maneuverability comes at the expense of complexity, and as

such many of the control implementations use abstractions

that limit performance, leading to a slower trajectory. In this

paper, the dynamics of the system are analyzed and modelled

in the Drake control toolbox, and trajectory optimization used

to investigate the improvements gained with an optimal

controller.

Introduction
Robocup Soccer Small Size League (SSL) is a competition that

simulates a football game, where two teams of six robots play

with an orange golf ball, using information from overhead

cameras. Robot dimensions are constrained to fit within a

small cylinder, and further restrictions lead to a design that is

capable of receiving the ball at only one location on the

perimeter.

Since the game is dynamic and fast-paced, robots need to be

able to change direction quickly. This is something that a two-

wheeled differential drive is unable to do, as they are unable

to exert a force parallel to their wheel axle. Holonomic drives

allow the resultant drive force to point in any direction, and

change instantaneously in direction (ignoring constraints from

the actuators themselves). Additionally, rotational torque can

be decoupled from linear acceleration, allowing rotation

simultaneously translation – useful for shielding or receiving a

ball.

Holonomic Drives
The defining feature of a holonomic drive is its wheels, which

consist of one large motor-driven hub wheel, with a set of

smaller unpowered sub-wheels whose axes of rotation lie in

the tangent plane of the hub. These wheels come in two

common forms – “omniwheels”, where the sub-wheel axis is

orthogonal to the hub axis; and “Mecanum wheels”, where

the angle between them is around 45°. The former is the type

used in Robocup, while the latter has applications in heavier

robots, due to details of the mechanical design.

With three or more of these wheels, the kinematics of the

robot is fully-defined by the kinematics of the wheels. For

Robocup SSL, typically four wheels are used, due to the

increased total actuator power, and geometric constraints

imposed by the kicking mechanism. Some example drive

configurations are shown in Figure 2.

Figure 1 - From left to right, two views of a Mecanum wheel, and an

omniwheel, both made by Vex Robotics. The solid arrow is 𝑒 drive, and

the dashed arrow 𝑒 slip, parameters described in Table 1. We refer to
the green components as “sub-wheels”.

Figure 1 - An old photo of the RFC cambridge robocup robots [2]

(a) 3 omniwheels (b) Mecanum wheels (c) 4 omniwheels

Figure 2 - Typical holonomic drive configurations, rendered with
Three.JS [3].

Modelling dynamics
We model the system as a time-invariant second-order state-

space system, parameterized as described in Table 1. The

model is of the form

𝑞 = [𝑥 𝑦 𝜃]𝑇 , 𝑞 ̈ = 𝑓(𝑞 ̇, 𝑞 , �⃗�),

where 𝑥, 𝑦 is the position of the robot in the global frame, and

𝜃 is the angle from the world x axis to the robot x axis,

measured in the right-hand sense. �⃗� is a vector of non-

dimensional motor voltages, where |𝑢𝑖| ≤ 1.

We make a number of simplifying modelling assumptions:

 The inertia of the wheels is neglected

 The sub-wheel axles are frictionless

 All wheels remain in non-slip contact with the ground

We model the motors using a simplified model parameterized

by the stall-torque and free-running angular velocity:

𝜏𝑖 = 𝜏𝑖
max (𝑢𝑖 −

𝜔𝑖

𝜔𝑖
max)

This requires the angular velocity of the wheel to be found.

Using rigid body dynamics, the velocity of the wheel contact

point in the body frame can be found as:

𝑣 𝑖 = 𝑣 |body + �̇� × 𝑑 𝑖

 𝑣 |body = 𝑅(𝜃)−1𝑣 = [
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] [
�̇�
�̇�
]

Here we introduce a 2D cross-product shorthand notation,

𝑎 × 𝑣 ≝ 𝑎𝑒 𝑧 × (𝑣𝑥𝑒 𝑥 + 𝑣𝑦𝑒 𝑦)

 𝑣 × �⃗⃗� ≝ (𝑣𝑥𝑒 𝑥 + 𝑣𝑦𝑒 𝑦) × (𝑤𝑥𝑒 𝑥 + 𝑤𝑦𝑒 𝑦) ⋅ 𝑒 𝑧

Splitting the velocity into wheel and sub-wheel components,

𝑣 𝑖 = 𝑟𝑖𝜔𝑖𝑒 𝑖
drive + 𝑣𝑠𝑒 𝑖

slip
= [

↑ ↑

𝑒 𝑖
drive 𝑒 𝑖

slip

↓ ↓

] [
𝑟𝑖𝜔𝑖

𝑣𝑠
]

⇒ 𝜔𝑖 = [
1

𝑟
0] [

↑ ↑

𝑒 𝑖
drive 𝑒 𝑖

slip

↓ ↓

]

−1

𝑣 𝑖

The force exerted on the wheel by the ground must act

perpendicularly to 𝑒 𝑖
slip

, since the sub-wheels cannot bear

tangential loads:

𝑓 𝑖|body = 𝑓𝑖|body(𝑒 𝑖
slip

)
⊥

Expressing the total torque exerted by the motor in 3D, where

𝛼 and 𝛽 are the reaction torques fixing the motor shaft:

𝜏 𝑖 = 𝜏𝑖(𝑒 𝑖
drive)

⊥
+ 𝛼𝑒 𝑧 + 𝛽𝑒 𝑖

drive

Resolving moments on the wheel in 3D, we have:

𝜏 𝑖 = 𝑟 × 𝑓 𝑖|body = −𝑟𝑖𝑒 𝑧 × 𝑓𝑖|body(𝑒 𝑖
slip

)
⊥

= 𝑟𝑖𝑓𝑖|body𝑒 𝑖
slip

⇒ 𝜏 𝑖 ⋅ (𝑒 𝑖
drive)

⊥
= 𝜏𝑖 = 𝑟𝑖𝑓𝑖|body𝑒 𝑖

slip
⋅ (𝑒 𝑖

drive)
⊥

⇒ 𝑓 𝑖|body =
𝜏𝑖

𝑟𝑖

(𝑒 𝑖
slip

)
⊥

𝑒 𝑖
slip

⋅ (𝑒 𝑖
drive)

⊥

Note this has a singularity when 𝑒 𝑖
slip

∥ 𝑒 𝑖
drive, but in this case

the wheels are degenerate anyway – the system would act like

a ball bearing, exerting no net force

Finally, we use momentum balances and a frame conversion

to conclude that:

[
�̈�
�̈�
] =

1

𝑚
𝑅(𝜃)∑𝑓 𝑖|body , �̈� =

1

𝐼
∑𝑑 𝑖 × 𝑓 𝑖|body

Symbol Quantity Comments

𝑚 Overall mass Lumped with wheel mass for simplicity

𝐼 Overall inertial In the vertical axis. Wheel inertia is not modelled, as it is comparatively small.

𝑁 Number of wheels State is under-constrained if 𝑁 < 3

 For each wheel: Vectors measured in the body frame

𝑟𝑖 Radius From large wheel axle to ground

𝑑 𝑖 Location Relative to the center of mass

𝑒 𝑖
drive Drive direction The unit direction vector in which a linear velocity causes only motor shaft rotation –

should be perpendicular to the motor shaft

𝑒 𝑖
slip

 Slip direction The unit direction vector in which a linear velocity causes only sub-wheel rotation –
should be perpendicular to the shaft of the sub-wheel in contact with the ground plane.

For “omniwheels”, 𝑒 𝑖
drive ⊥ 𝑒 𝑖

slip

𝜏𝑖
max Motor stall torque

𝜔𝑖
max Motor free-running

angular velocity

Table 1 – Parameters of the holonomic drive model

Combining all these equations gives Equation 1, from it can be

found that the dynamics are linear in �̇�, �̇�, �̇�, 𝑢𝑖, but non-linear

in 𝜃.

Parameter values
The parameters below describe the robocup robots as used

by RFC Cambridge.

Symbol Value

𝑚 1 kg
𝐼 0.0031 kg m2
𝑁 4

𝜃𝑖 {
𝜋

4
,
3𝜋

4
, −

3𝜋

4
,−

𝜋

4
} rad

𝑟𝑖 0.025 m

𝑑 𝑖 0.078 [
cos 𝜃𝑖

sin 𝜃𝑖
] m

𝑒 𝑖
drive [

− sin 𝜃𝑖

cos 𝜃𝑖
]

𝑒 𝑖
slip

 [
cos 𝜃𝑖

sin 𝜃𝑖
]

𝜏𝑖
max 0.75 Nm

𝜔𝑖
max 150 rad s−1

Table 2 - parameter estimates for the RFC robot

These were determined from a mixture of estimation and

interpretation of constants in existing source code.

Unfortunately, access to a fully-assembled robot was not

possible during this project.

Basic control implementation
A typical control implementation for this platform implements

velocity control on this system by resolving the target angular

velocity into rotor angular velocities, and using an isolated PID

controller to regulate the velocity of each motor individually.

From this, an implementation of position control can be

formed using a 2D equivalent of “bang-bang” or “on-off”

control, which simply chooses an achievable velocity pointing

directly towards the goal. Typically, orientation will be

regulated to remain constant

This controller has a problem – the maximum robot velocity is

non-uniform in direction. Consider the robot in Figure 1c

moving upwards, with uniform motor parameters. To do this,

the control inputs become �⃗� = [𝑢𝑡𝑙 𝑢𝑏𝑙 𝑢𝑏𝑟 𝑢𝑡𝑟]𝑇 =

[1 1 −1 −1]𝑇. This gives us a terminal velocity of

√2𝑟𝜔max. Contrast this with a movement up and to the right

at 45°, which requires �⃗� = [1 0 −1 0]𝑇. This gives us

terminal velocity of 𝑟𝜔max. In general, the terminal velocity

vector is constrained to lie in a convex polygon anchored

rotationally to the frame of the robot.

A similar argument can be made about acceleration. For the

4-wheeled symmetric robot, the bounding polygon for

accelerations is geometrically similar to the one for velocities,

but this is not generally true. Later on, we will briefly explore

exploiting situations when these differ.

Therefore, we should expect an optimal controller to reorient

the robot such that the direction of maximum velocity is

aligned with the direction of motion.

Trajectory optimization
To find optimal controllers for a given trajectory, we use direct

collocated trajectory optimization. This finds a trajectory

composed of concatenated splines, such that the gradient at

both the knot-points and the mid-spline matches that

described by the system dynamics. To implement this, we use

the DircolTrajectoryOptimization class within the Drake

[1] toolbox.

[
�̈�
�̈�
] =

1

𝑚
𝑅(𝜃)∑

𝜏𝑖
max

𝑟𝑖
(

 𝑢𝑖 − [
1

𝑟𝜔𝑖
max 0] [

↑ ↑

𝑒 𝑖
drive 𝑒 𝑖

slip

↓ ↓

]

−1

(𝑅(𝜃)−1 [
�̇�
�̇�
] + �̇� × 𝑑 𝑖)

)

(𝑒 𝑖

slip
)
⊥

𝑒 𝑖
slip

⋅ (𝑒 𝑖
drive)

⊥

�̈� =
1

𝐼
∑

𝜏𝑖
max

𝑟𝑖
𝑑 𝑖 ×

(

(

 𝑢𝑖 − [
1

𝑟𝜔𝑖
max 0] [

↑ ↑

𝑒 𝑖
drive 𝑒 𝑖

slip

↓ ↓

]

−1

(𝑅(𝜃)−1 [
�̇�
�̇�
] + �̇� × 𝑑 𝑖)

)

(𝑒 𝑖

slip
)
⊥

𝑒 𝑖
slip

⋅ (𝑒 𝑖
drive)

⊥

)

Equation 1 - full system dynamics

Figure 3 – Comparison of the
basic control strategy and an
optimal one for the 4-wheel
omniwheel drive, showing
robot reorientation. Both
robots started moving
simultaneously, and the
optimal controller can be seen
to have covered more ground.

Formally, we solve the problem:

find 𝑥 (𝑡[⋅]) 𝑠. 𝑡. 𝑥 satisfies dynamics constraints

|�⃗� (𝑡[⋅])|∞ < 1

𝑥 (𝑡[1]) = 𝑥 start
𝑥 (𝑡[𝑁]) = 𝑥 𝑒𝑛𝑑

maximizing 𝑡

Since we are evaluating the effectiveness of position control,

𝑥 start and 𝑥 end were chosen such that the corresponding 𝑞 ̇ =

0.

To evaluate the improvement offered by the reorientation

strategy, we should also run an optimization which is

constrained to not use this strategy. We desire that

𝑞 𝑖 = 𝑞 start + 𝜆𝑖(𝑞 end − 𝑞 start) ∀𝑖,

where 𝜆𝑖 is arbitrary constant. In other words, the non-

derivative states are constrained to be a linear interpolation

between the start and end point. While we could express this

constraint by making 𝜆𝑖 a decision variable, this would be a

poor choice, as we end up with further non-convexities.

Instead, we can express this constraint as a linear one, in

matrix form, with some manipulation:

𝐴𝑞 𝑖 = 𝐴𝑞 start + 𝐴𝜆𝑖(𝑞 end − 𝑞 start)

Choose A ∶ 𝐴(𝑞 end − 𝑞 start) = 0⃗

⇒ 𝐴𝑞 𝑖 = 𝐴𝑞 start

We can choose an appropriate 𝐴 in Matlab using

null((qend - qstart)')', where null(v')' finds a

matrix whose left null space is 𝑣.

Figure 4 shows the result of running this trajectory for a

destination 1m away. The optimal controller reaches its target

in 0.34s, whereas the naïve controller takes 0.38s – roughly a

10% improvement. Of note is that the optimal controller is

running all motors at full power until it approaches its target,

whereas the naïve controller leaves motors at half power.

Reachable space
In the previous section, we were optimizing for a fixed

trajectory in minimal time. Another interesting question is to

optimize for a given time, and find the region of all reachable

positions by the robot. This has applications such as

determining whether a robot is able to intercept a ball. We

restrict the search space to the three dimensional region

parameterized by robot position and time.

To conduct this search, we discretize the space into time step

and direction vectors. For each horizon time 𝑡𝑒𝑛𝑑 and

direction vector 𝑑 , we run a trajectory optimization to find the

furthest reachable location in a given direction

find 𝑥 (𝑡[⋅]) 𝑠. 𝑡. |�⃗� (𝑡[⋅])|∞ < 1

𝑥 (𝑡[1]) = 𝑥 start
𝑡[𝑁] = 𝑡 𝑒𝑛𝑑

𝑥 (𝑡[𝑁]) = 𝑥 start + 𝜆𝑑

𝑥 satisfies dynamics constraints

maximizing (𝑥 (𝑡[𝑁]) − 𝑥 start) ⋅ 𝑑

Using the same technique as before to re-express the 𝜆

constraint. Again, we compare the result of this optimization

with the result of running the same optimization with the

additional constraints imposed by the simple controller. The

results are shown in Figure 5.

The naïve controller shows the polygonal nature previously

predicted. For small time periods, the optimal controller has a

very similar horizon, as there is not enough time to reorient.

For large time periods, the optimal horizon approaches a

circle.

These horizons also show the benefit of choosing a 4-wheel

base over a three-wheel base, as for the same robot and

motor parameters, the horizon is greater. Of course, this

ignores considerations such as incremental motor and battery

mass.

There’s an interesting effect here for the three-wheeler

though: while the optimal controller horizon for the four-

wheeler is coincident with the naïve one at the vertices of the

polygon, the optimal horizon for the 3-wheeler exceeds it –

i.e. there is a yet more efficient form of motion than that of

reorienting to the direction of maximum linear velocity.

Figure 4 - Trajectory optimization applied to a 3-wheel robot. The
upper plot shows the optimal controller in green. The lower two plots
show the input signals for the two controllers

Trajectory stabilization
Having found an optimal trajectory, it is useful to be able to

stabilize it, to deal with disturbances, either in the form of

model errors, or initial state errors.

One approach to this is to use TVLQR. We choose our cost

matrices using Bryson's rule [2]:

𝑄 = [

⋱ 0
𝛼𝑖

2

(𝑥𝑖)max
2

0 ⋱

] , 𝑅 = 𝜌 [

⋱ 0
𝛽𝑖

2

(𝑢𝑖)max
2

0 ⋱

]

Where ∑𝛼𝑖 = 1, ∑𝛽𝑖 = 1

In this case, we choose the maxima

(𝑢𝑖)max = 1

𝑥 max = [0.1m 0.1m
𝜋

4
rad 1ms−1 1ms−1 3𝜋rads−1]

And the weights

𝛽𝑖 = 1, 𝛼 ∝ [10 10 100 1 1 1], 𝜌 =
1

50

Finally, we choose 𝑄𝑓 = 100𝑄.

Figure 6 shows the result of applying the resulting TVLQR

controller to the optimal trajectory found in Figure 4, with

perturbations in initial condition normally distributed as

𝑁 (0, diag (
1

2
𝑥 max)

2

).

TVLQR is not a perfect approach here, as it does not adjust the

target based on the current position of the robot. Specifically,

if the robot “falls behind” the target position, in our problem

it is impossible for it to catch up, as the target path is the

fastest of all possible paths.

Figure 5 – Reachable horizon for 𝑡𝑓 ∈ 0.05, 0.10, 0.15, 0.20, 0.25 s for two robot configurations, with optimal and naïve orientation-

preserving controllers. Lines are broken where trajectory optimization was unable to find a solution.

(a) The horizon for the 4-wheeled model (b) The horizon for the 3-wheeled model

Figure 6 - Result of applying TVLQR to disturbed initial conditions. All final destinations are within 5% of the goal – so we still achieve better
time-to-destination that if the naïve controller were used.

Conclusions
Using a more detailed model of the drive systems allows the

dynamics to be exploited. However, the average

improvement in travel time is small – around 20%.

Additionally, trajectory optimization runs too slowly for this

technique to be used online, in a real game.

Future work could try approximating the optimal controller

with a closed-form controller, using offline trajectory

optimization to tune its parameters.

References
[1] Russ Tedrake. Drake. [Online].

https://github.com/RobotLocomotion/drake

[2] MIT OpenCourseWare. (2010) 16.30 Lecture notes.

[Online]. http://ocw.mit.edu/courses/aeronautics-and-

astronautics/16-30-feedback-control-systems-fall-

2010/lecture-notes/MIT16_30F10_lec12.pdf

[3] Walker Chan and et al. (2007) RoboCup Team

Description Paper: RFC. [Online].

http://robocupssl.cpe.ku.ac.th/tdp/2007/RFCCambridg

e_SSL_TDP_2007.pdf

[4] Ricardo Cabello. Three.js. [Online]. http://threejs.org/

https://github.com/RobotLocomotion/drake
http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-30-feedback-control-systems-fall-2010/lecture-notes/MIT16_30F10_lec12.pdf
http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-30-feedback-control-systems-fall-2010/lecture-notes/MIT16_30F10_lec12.pdf
http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-30-feedback-control-systems-fall-2010/lecture-notes/MIT16_30F10_lec12.pdf
http://robocupssl.cpe.ku.ac.th/tdp/2007/RFCCambridge_SSL_TDP_2007.pdf
http://robocupssl.cpe.ku.ac.th/tdp/2007/RFCCambridge_SSL_TDP_2007.pdf
http://threejs.org/

	Introduction
	Holonomic Drives
	Modelling dynamics
	Parameter values

	Basic control implementation
	Trajectory optimization
	Reachable space

	Trajectory stabilization
	Conclusions
	References

